注) I-V測定部分は、「W32-B2900SOL4」を参照ください。

M35-R580020FBW2\	20LRW2	52	キーサイ	ト・テクノ	ロシー
分米計器割米週田		品番	GP-IBボード	価格	動作環境
		W32-B2900SOLBMS-R	ラトックシステム製	970.000	Windows
太陽電氾		W32-B2900SOLBMS-N	NI製	370,000[]	Vista/7/8.1 (32.64bit)
分光感度/IPCE測定	バイアス光量	W32-B2900SOLBMS2-R	ラトックシステム製	1 090 0000	Excel
使用できる機種 B2901A,B2902A,B2911A,B2912A	自動制御機能	W32-B2900SOLBMS2-N	NI製	1,000,00015	2013(32bit)
		-		-	

B2901A,B2902A,B2911A,B2912Aは、Keysight(旧Agilent) Technologies社の商標です。

機能

注)分光光源、バイアス光源、ソーラーシミュレータ側の機能により、本ソフトの全ての機能が 実現できない場合があります。詳細は、それぞれの測定項目の説明部分を参照ください。

本ソフトは、太陽電池I-V測定システムを機能アップして、太陽電池の分光感度やIPCEの測定機能を追加しました。 従来からのI-V測定機能は全て継承し、分光光源の制御機能を追加することにより、分光感度/IPCEの測定を可能 にしました。

また、太陽電池セルの研究開発のための多様な計測方法にも対応しております。

1.波長別I-V測定と、その3D表示。

2.バイアス光を印加した分光感度/IPCE測定。

3.セル2個の同時測定。

4.ファイバー式分光光源を使用することにより、グローボックス内での測定が可能。

(以下は、W32-B2900SOLBMS2の機能です。)

6.ソーラーシミュレータの光量を変えながらのI-V測定。(光量可変機能付きソーラーシミュレータが必要) 7.バイアス光量を変えながらの分光感度/IPCE測定。(バイアス光量可変機能付き光源が必要)

本ソフトで分光感度の測定を行うためには、分光光源の「波長別光量値(mW/cm2)のデータが必要になります。 このデータの取得は、同梱の「光量校正アドイン」によって測定を行います。 光量校正アドイン用操作マニュアル を参照ください。

操作説明

本操作マニュアルは、別冊B2900A用I-V測定アドインの操作マニュアルとの併用を前提に記載されております。 従いまして、I-V測定用操作マニュアルにすでに記載されている部分は省略されております。 本マニュアルを参照いただく前に、事前に、I-V測定の操作マニュアルの熟読をお願いいたします。

操作説明の目次

	分光感度/IPCEの測定手順	3
•	バイアス光量を変更しながらの分光感度/IPCEの測定手順	7
•	分光感度/IPCE測定タイミングチャート	10
•	波長別I-V測定手順	11
	波長別Ⅰ-V測定のタイミングチャート	15
•	ソーラーシミュレータの光量可変I-V測定手順	16
	ソーラーシミュレータの光量I-V測定タイミングチャート	18
•	手動でのバイアス光印加での測定	19
•	パイアス光用光源の光量校正の方法	21

Appendix-1 バイアス光照射による分光感度測定の注意点-----23

分光感度/IPCEの測定手順

分光感度/IPCE測定に必要な光量校正データの準備

分光感度/IPCE測定を行うためには、「光量校正アドイン」で測定した波長別光量データリストが必要です。 このデータリストが、現在、測定しようとしているExcelシート上のどこかに入力されている必要があります。 測定に必要なデータは、波長と光量の対データだけですから、「光量校正アドイン」で測定したデータそのまま でも構いませんが、コピー&ペーストで現在のシートに入力して使用することもできます。(下図の赤枠)

光量	校正アド	インで浿	定したデータ	z例			1-12	- C C C C C C C C C C C C C C C C C C C	_ 07 小 作 ロ) 刀 7
	• • •	=	20130)819c_定エネルギ・	-ONの3回繰り返し.×	lsx - Mi	crosoft Excel		
771	ル ホーム	挿入	ページ レイアウト	数式 データ	校閲表示	開発	アイン チーム		X 🖬 🗕 🜔 🗸
	N38	•	(<i>f</i> x						~
. A	В	С	D	E	F		G	Н	
1	分光光源	SM-	5						
2					/				
3	測定波長		半値幅	25nm					
4	390		経過時間(sec)	光波長(nm)	差光量(m)//cm2	1			
5	400		4.056	- 390	0.0E	756			
6	410		12.605	400	0.0E	568			
7	420	波 長 征	ユ直 22.62	410	0.08	583			
8	430		32.651	420	0.08	577			
9	440		41.278	430	0.08	561			
10	450		49.904	440	0.0E	565			
11	460		57.923	450	0.08	588			
12	470		67.891	460	0.0	843			
13	480		76.549	470	0.0E	472			
14	490		85.207	480	0.0E	548			
15	500		93.741	490	0.0E	516			
16	510		102.648	500	0.0E	512			-
14 4	▶ ₩ Sheet1	Sheet2	/ t]/			1 4			▶ [
נדב	15 🔛							<u> </u>	

光量校正アドインで測定したデータの、波長と光量がペアー になっている、この赤枠部分だけを使用します。

2 分光光源連動モードに設定

I-V測定ソフトを、分光光源連動モードに変更します。(下図参照) 「機器の設定」ボタンをクリックし、機器設定画面の「分光光源」から分光光源の型式を選択すると、本ソフト は分光光源連動モードに設定されます。「No Use」を選択すると、分光光源は切離され、I-V測定モードに戻り ます。

4/26

分光光源との通 試験で、分光光源から光を照射して、太陽電池セルの位置を確定します。 ここで重要なことは、光量校正アドインで使用した光センサーを取り除いて、そのセンサー 位置と極力同じ位置にセルを置くことです。特に高さ方向のズレは測定誤差に大きく影響し ますから、光センサーの表面と、セルの表面の高さは正確に合わせる必要があります。 また、ベース電流を測定しない測定の場合は、暗箱/暗幕などで、周辺の灯りを遮断する 必要があります。

ベース電流を毎回測定する測定では、周辺の灯りが安定していれば、灯りの遮断は、 あまり気にする必要はありませんが、その明るさは、バイアス光として作用しますから、 バイアス光の影響を受けるセルの場合は、やはり、周辺の灯りは遮断してください。

> 光センサーを太陽電池セルに置き換えます。 置き換えるとき、高さ方向の位置合わせは、 極力、正確に合わせる必要があります。

4 分光感度/IPCE測定モードに設定

分光光源連動モードに設定すると、タイトルが赤色に変わり、分光光源の型式が表示されます。 注)このタイトル部分をダブルクリックすると、分光光源連動モードが解除され、I-V測定モードに 戻ります。

Excelタブを選択します。-

5 分光感度/IPCE測定前の準備

	[I] J → · · · · · · · · · · · · · · · · · ·	cel Collog Collo
	ファイル ホーム 挿入 パージレイアウト 数式 データ 約替 表示 酵母 アドイン チーム	
同一シート内に波馬と光景のデータが入力	82900SOLASV4 -	(C)20122014 SYSTEMHOUSE SUNRISE Inc.
されている必要があります。		分光器 BMS-25CI 使用 缩小
C10C0 02020 007078		
	X70 - LTX	START PAUSE STOP
	A 9. C	Excel
	1 光波長(nm) 実創光量(mW/cm2)	
先頭セル位置に、このセル位置が登録されて――	2 390 3.661	Excel Sweep List
	3 410 4.895	00001
いること。	4 430 5.603	B2901
	5 450 6.411	- 出力方法
	6 470 7.423	
	7 490 7.048	電圧
/	0 510 6.447	#読業法 3030. ma ☑ AUTO, RANGE
測定を開始すると、このカーソル位置から	10 550 6192	
別たど用加すると、このカーノル区直から	11 570 5944	(保持時間 ms 图 於 7 時出7) 0FF
測定結果が入力されます。	12 590 5.57	□/%2度力
	13 610 5.169	□ PAUSE出力OFF
	14 630 4.753	
	15 650 4.376	测定方法
	16 670 4.216	積分時間(NPLC) 測定遅延(ms) □電圧
	17 690 4.003	1.0 0 1.0
	18 710 3.617	
	19 730 3.326	 潮電レンジ ・ 潮電レンジ ・ 時間 □ 抵抗
	20 /50 3.1224	
	21 770 2.0700	M 7571E * 7170818 (15C)
	22 730 2.1402	☑ 22n-ik
	24 830 5.77	
	25 850 3.0529	1 91部2周定器(犯用)
	26 870 4.008	
	27 890 7.687	
	28 910 6.82	
	29 930 5.212	機器の設定 🎬 🖬 PRESET SEQ
	30 950 4506	
	31 970 5.34	SATE STATE DU TIX END
	32 990 7.491	
	34 1030 2.4641	
	35 1050 17971	
	36 1070 1.7002	
	37 1090 1.7449	
	38	· · · · · · · · · · · · · · · · · · ·
	H 4 + H Sheet2 / Sheet3 Sheet4 / 73 /	
	4756	

(C)2012...2014 SYSTEMHOUSE SUNRISE Inc.

25C使用

·光器 BMS

B2901 一出力方法。

START PAUSE

• Excel Sweep List

Excel

缩小

STOP

15-77.5

END

「START」ボタンで測定を開始します。 光量校正データの末尾(空欄のセル)で測定を終了します。 STOPボタンで測定をいつでも終了できますが、適切に終了するために、一旦、PAUSEボタンを押して、 分光光源の動作が停止するのを待ってから、STOPボタンで停止することをお勧めします。

		※ 20131113_北陸先端大学村田.xlsx - Microsoft Excel											×			
	771	化赤	-/4	挿入	ページレイア	ウト 数式	データー	如 表示	開発	7142 3	€-/ Δ				a 🕜 🗆	# B
	P	N X	MS P	They'r		11 × A*		» =	# 3		. 18		20122014 SYST	MHOUSE SUN	RISE Inc.	
	ND						^ _ _ =					- 1	ZNEW DM	0. 050 MB		- 1
測定則、爭則に人力した光重校止	8921 *	ar 🛷 👘	вт	<u>u</u> .	H • 3	• <u>A</u> • #		1 SE SE 120-	3.	% , %	*************************************	試設定・	757Las DM	5-200 DCH	1 88小	- 11
データ	クリッフ	ポード 5	_	_	フォント		G	配置 5	(教植	6	2911	• START	PAUSE	STOP	
		N3	3	• (<u> </u>	£							Exce			ľ
	Þr	•34.20 E/	-	0	D M(am2)	E	F	G		н	I					
	2	3	nm 夫/ 90	3.661	N/ Cm2)							_				_
測定結果がExcelシートに人力されます。——	- 3	4	10	4.895		光波長(nn	n 光量(mW/cr	n(SMU185)W(se	c) 実測	電流1(mA)	実測電流2(mA) 分光感度1(mA.分光感度2(m	A/IPCE1(%)	IPCE2(%)	
	4	4	30	5.603		390	3.66	1	0 0	00635862	0.00633895	86.84266	594 86.574023	19 27.61151	27.5261	- 1
	5	4	50 70	6.411 7.423		410) 4,89 5.60	3 18,312	(83 (0.016434	0.010662	109.10310	108.91419 784 146.21631	52 32,99706 27 42,2908	32,9399	- 11
分光感度、またはIPCEが同時に作図	7	4	90	7.048		450	6.41	53.506	45 (0.0238508	0.0238047	7 186.01466	185.6551	24 51 25737	51.1583	- 1
されます	8	5	10	6.447		470	7.42	65.539	99 (0.0317621	0.0318843	3 213.94382	233 214.76694	06 56.44475	56.66192	_
	8	5	30	6.306		490	7.04	74.774	49 (0.0336779	0.0336229	238.91813	328 238.52795	2 60.46092	60.36218	- 11
IPOE 例 たかONO 場 o は、 戦 軸 は	1	5	70	5.844		530	6.30	90.042	279 (0.0323461	0.0323743	3 256.47082	214 256.6944	8 60.00449	60.05681	- 1
日 助 に IP UE C 1F 区 C れ よ 9 。	1:	5	90	5.57		550	6.13	2 98.634	189 (0.0314255	0.0313952	256,2418	161 255,99478	5 57.77089	57.71519	
IPCE測定がOFFの場合は、縦軸は	13	0	10	5.169		570	5.84	4 105.041	09 0	0.0285243	0.0285558	3 244.04774	413 244.31724	35 53.091.09	53.14972	- 11
分光感度で作図されます。	15	6	50	4./53		590	5.16	112.001	59 (0.0252806	0.0252132	220.935	115 205.67421	6 41.73623	41.80918	- 1
分光感度もOFFの場合は、縦軸は	16	6	70	4216		630	4.75	124.397	19 (00128219	0.0128087	134.8821	797 134.743	26 54824	26 52091	
雷流値で作図されます。	17	6	90	4.003		650	4.37	5 132.241	4		IDCE CI	IDVE				- 1
	10	7	10 30	3.617		670	4.21	139.696	5	70	IFCE CO	JAVE			_	
	20	7	50	3.1224		840	3.61	7 164.727	165	60	lan				-0-1	
	2	7	70	2.6758		730	3.32	5 170.827	99	00	8 8				-0-2	
	22	7	90	2.1402		750	3.122	178.046	668 704	50	r				-	
	24	8	30	5.77		790	2.140	199.666	55 3	40		}				
	25	8	50	3.0529					CEO	. 6						
	26	8	70	4.008						30 8		8			-	
	28	9	10	6.82						20		+				
	29	9	30	5.212						10		<u> </u>				
	30	9	50	4.506					_			Show				
	3	9	70 90	5.34					-	390	490 590	690	790 890	990	1090	
	33	10	10	4.887						000	450 550	光波	E(nm)	,,,,,	1030	
	34	10	30	2.4641					-			-				
	3	10	00	1.7971	Shaar9 /	Church / 01							_			× 11
	372	2F 2	oour 1 c	STREET C	Griefeta Z	oneed / to						-		III 100% (=		(†)

詳細設定ボタンをクリックして、分光感度の測定条件を設定します。

Yecから分光光源のシャッター開閉制御ができるシステムの場合。

波長の設定完了後のWait時間を入力します。 ベース電流を測定しない場合は、この後、測定を行います。 ベース電流を測定する場合は、この後、シャッター開後のWait時間を、 待って測定がおこなわれます。

2ch測定の場合は、ここをダブルクリックして、SMU1/SMU2のセル _ 面積の入力を切換えます。

セル面積を入力します。2ch使用の場合は、SMU1/SMU2をそれぞれ 入力します。SMUボタンをダブルクリックすると、SMU1/SMU2が切換ります。

※ベース電流とは、分光光源のシャッターを閉じていて、単色光が出力 されていない時の暗電流を意味します。

ベース電流を測定しないで、Isc/Jscの測定を行います。暗箱や暗幕を[~] 使用して、周辺を暗黒状態にした時は、こちらを選択します。

最初の測定時だけシャッターを閉じたときのベース電流を測定し、以降の 測定では、その測定値をベース電流として採用し、シャッターを開けて測定 した電流との差が取られます。 ベース電流は、波長毎にレベルが異なるため、このように初回だけのベース 電流測定の方法は避けたほうが無難と思われます。

各波長毎にシャッターを閉じたときのベース電流を測定し、シャッターを開け て測定した電流との差が取られます。 周辺から多少の光が漏れている場合などはこちらを選択します。 常にこちらを選択することを推奨します。 ただし、光の漏れはバイアス光として作用します。

波長別IV測定を行う場合の設定項目です。 「ISC値」:全IV測定値を、単色光源OFF時のISC電流との差を取り算出します。 「スイープ値」:全IV測定値を、単色光源OFF時のIV測定値との差で算出します。

測定結果をExcelシートへ入力する項目を選択します。(差電流は、必須です。) IPCEを指定するためには、分光感度にチェックを付ける必要があります。

測定時に作図する項目を選択します

測定の繰り返し回数を設定します。 この繰り返しは測定値のバラツキの評価に使用します。 DSCでは、測定遅延による影響の評価に使用します。 繰返し毎の遅延時間は、メイン画面の「測定遅延」の入力値に寄ります。 この回数は、波長別I-V測定では、適用されません。 シャッターを開いてから電流測定開始までの待ち時間

MONOCHROMATER

MONOCHRO SCANNER BMS-25C 波長設定後のWAIT ● 0.3 sec セル受光部面積 SMU1 1 cm2 GPIB Address MONO-TYPE • SM-5/M10 -500 nm ベース電流の測定 (単色光OFFの時の電流) Gratings(Lin/nom) ScanSpeed(mm/min) 300 🔻 1200 -● ペース電流は測定しない。 WAVE LEN(nm) FILTER-NO ● ペース電流を測定する。(初回だけ) Filter Control FILTER-1 390 FILTER-2 • ●パース電流を測定する。(毎回) <推奨> Filter Manual Change - スイーブ測定時のペース電流 ● O ISC値 O スイープ 680 FILTER-3 V ○ スイープ値 - 分光感度の測定項目 Shutter Manual Change シャッター開後Wait 繰返 ●1 ÷ アペース電流(A) Shutter1 Auto Shutter2 Auto 0.5 sec □ ØRGANIC ■ 実測電流(B) Communication Te 試験開始 波長 500 , 🖻 分光感度 PCから、シャッター開閉制御のできないシステム、 DIPCE(EQE または、手動でシャッター開閉操作を行わない場合は スイープ測 Ŧ ェックを付けないでください。 ⊙ 分光感度

×

注)シャッター開閉制御を行う利点

単色光の光量を測定する場合、シャッタ閉で単色光 OFFの光量(周辺光)を測定し、シャッタ開での単色光 ONの光量との差を取ることにより、周辺から侵入した 光の誤差成分を除去し、正確な単色光の光量測定が できます。

しかし、手動でのシャッタ開閉制御で測定を行う場合、 波長ごとに手動でシャッタを開閉する必要があるため、 測定が、相当、面倒になりますからご注意ください。

・バイアス光照射測定

単色光だけの電流変化分の測定が可能になります から、バイアス光を照射した状態での測定が可能に なります。

バイアス光量を変更しながらの分光感度/IPCEの測定手順

注) この項目の測定は、下記の条件が満たされている場合に可能です。 <u>1.バイアス光源として、光量連続可変が可能な白色光源(朝日分光製HAL-C100)が接続されている。</u> <u>2.PCからの分光光源のシャッター開閉制御が可能なシステム構成である。</u> <u>3.ソフト型番「W32-B2900SOLBMS2」である。</u>

1 前項の分光感度/IPCE測定に必要な項目は全て設定しておきます。

前項の「分光感度/IPCE測定」の項を参照ください。

分光光源の選択を行います。

分光光源の選択を行っていないと、バイアス光量の制御モードが設定できません。

シャッター制御にチェックを付け、バイアス光量の制御条件を入力します。

ソーラーシミュレータの種類を「Asahi Spectra」を選択しないと、「光量制御ON」が表示されません。

「BS.START」ボタンをクリックすると測定を開始します。

本ソフトは、測定対象となるセルの光応答性や電気的応答性に適切に対応し、正確な測定ができるように、 様々な部分にWAIT時間の設定ができます。また分光光源の物理的動作の遅れにも対応できます。 ここでは、測定上のWAIT位置とその入力方法を示します。 注)

ここでの測定で、分光光源のシャッター開閉制御ができないシステムでは、下記の「暗電流測定」部分は省略さ れます。

3 分光光源連動モードに設定

(この3項/4項は、前述の分光感度/IPCE測定の2項/3項と同じです。)

I-V測定ソフトを、分光光源連動モードに変更します。(下図参照)

「機器の設定」ボタンをクリックし、機器設定画面の「分光光源」から分光光源の型式を選択すると、本ソフト は分光光源連動モードに設定されます。「No Use」を選択すると、分光光源は切離され、I-V測定モードに戻り ます。

長別I-V測定(3D分光感度)の測定手| E

左図では、520nmになります。

分光光源の「詳細設定」の「通 試験」で520nmの光を出力します。 この状態で、分光感度モードを一旦解除し、I-V測定モードにして、 波長520nm(例)でのI-V測定を行い、適切なI-Vカーブが作図される ようにスイープ電圧範囲を決定します。 左の図では、-0.05V~2.6Vに決定しています。 最大電流は、約0.0002mAとなります。

2 波長別I-V測定に必要な光量校正データの準備 (この2項は、前述の分光感度/IPCE測定の1項と同じです。)

波長別I-V測定を行うためには、「光量校正アドイン」で測定した波長別光量データリストが必要です。 このデータリストは、分光感度/IPCE測定で使用するデータリストと同じデータです。 このデータリストが、現在、測定しようとしているExcelシート上のどこかに入力されている必要があります。 測定に必要なデータは、波長と光量の対データだけですから、「光量校正アドイン」で測定したデータそのまま でも構いませんが、コピー&ペーストで現在のシートに入力して使用することもできます。(下図の赤枠)

	光量校	正アドイン	ノで測定した.	データ例				<i><i><i><i>i</i> i i i i i i i i</i> </i></i>
		1 151 131	7	20130821a_分为	É感度3D測定xlsx - M	licrosoft Excel		
波長位置 ⁻	光量校 影の付け りリップボ 0 1 2 3 4 6 7 8 9 10 11 12 13 14	正アドイン # 22 33 # 4 # 5 # 8 2 # 7 # 7 # 7 # 7 # 7 # 7 # 7 # 7	・で測定した: ・で測定した: ドック・11・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	データ例 20130821a,分升 20130821a,分升 ウト 第二 1195237 0.021863 0.021848 0.021937 0.021938 0.021937 0.021938 0.021938 0.021938	志度3D測定xlax - M	ticrosoft Excel デーム デーズ デーブルとして書式説定 セルのスタイル ~ スタイル H		
	13 14 15 16 17 18 19 20 21 22 23 24 I< ►	107.469 118.514 128.155 137.702 147.67 157.374 167.326 178.481 189.51 200.602 211.631 223.034 Sheet1	590 610 630 670 690 710 730 750 770 790 810 810	0.021848 0.021961 0.021776 0.022214 0.02211 0.022113 0.022132 0.022132 0.022132 0.022132 0.022127 0.022205				
	אעדב	2					D 🛄 100% 🕞	🕀 🗸

光量校正アドインで測定したデータの、波長と光量がペアー になっている、この赤枠部分だけを使用します。

¥

稿小

最大出力動作省 1.88
最大出力動作省 0.00128801
曲線因子FF 0.66575
直列振抗Rsh(公 7.3925E+04
並列振抗Rsh(公 2.1715E+07)
低光却展れの4

益列银杭Hanks 2.577 受先都面積(or 1.7 変換効率力(%) 0.00142439 3 ■#WPint(mW 170

0

-0-410 -0-430

-0-450

-0-470 -0-490

-0-510 🔠 🛄 🛄 100% (-

170 電圧(V) 電流(mA) -0.0600001 0.001558 -0.0000001 0.001558 0.001555 0.1499999 0.001555 0.1999999 0.001555 -0.001544
 -0.001545

0.001556 0.001556 0.001552 0.001552 0.001546 0.001544 0.001544

0.001 52

0.001523 0.001525 0.001527 0.001527 0.001517 0.00151 0.00150

入射光Pint 時間(ms)

37.34598 37.19454

0.00125628

0.0999999 999 0.001396 999 0.00139 0.2 0.001384

0.25 0.00138

0 52.057

103.9

155,925

259.613 311.463

波長別分光感度(アモルファス)

170 電圧(V) 電車(mA) 分光感度(c) 0001377 368558 0001383 37.01473 0.005 0.001387 37.12417 0.005 0.001385 37.24598

- ·経過時間
- 単色光の波長
- ・太陽電池セルのパラメータ
- ・電圧/電流/分光感度(または、IPCE)

波長別I-V測定値が同時に作図されます。 縦軸は分光感度、またはIPCEです。 IPCE測定がONの場合は、縦軸は 自動的にIPCEで作図されます。 IPCE測定がOFFの場合は、縦軸は 分光感度で作図されます。 分光感度もOFFの場合は、縦軸は 電流値で作図されます。

13/26

0.00107

電圧(V)

52.05

103.921 155.849 207.677 259.535 311.39 363.241 415.09 466.944 518.853

622.5

674.481 726.354 778.31 830.158 882.004 933.859 965.686

7026 170

9999 0.15 0.25 0.35 0.35 0.4 0.45 0.5

0.55 0.65 0.7 0.75 0.85 0.85 0.9

170 電流(mA) -0.05 0.001197 0 0.001198 0.05 0.001191

0.001197 0.001193 0.001188 0.001 0.001 0.001 0.001 0.001

-0.00

0.001 0.001 0.001 0.001 0.001

人射光Pir 分光感度(r時間(ms)

31.4183 31.2698

20

-40 -60 -80 聖話米尔

0.02186

0.0219

0.02177

0217

L02190

02190

050

波長別I-V測定データの入力方向の切換

太陽電池の測定項目 E目付時刻も入力 電流算出方法 ОК 実電流で算出 ✔ 測定値を下方向へ入力 □ 往復測定 Auto_Mode_Size/F 36 ☑直列抵抗Rs ☑短船電流ISC 「測定値を下方向へ入力」にチェックを付けると、一 DARK-IV ☑ 開放電圧Voc ☑ 並列抵抗Rsh I-V測定データの入力方法が下記のようになります。 ☑ 最大出力電力Pmax 測定構造回数 1 . . . 2 最大出力動作電圧 Vmax □エラーを無視する。 ☑ 最大出力動作電流Imax ☑ 定期的にBookのパックアップ 20 - 回毎 30 ☑ 曲線因子FF □ 司+規定電法**N** 日本日、発達し測定がり、 □ 電流規定電注Vi ☑ 受光部面積 SMUL 1 6 図変換効率・

太陽電池測定

×

F		₩D ₹					-	2013120	4_物質材料	安田」有機	薄膜太陽電池:	分光感度xlsx	- Microsoft	Excel		-	-				-			X
ľ	本計	插入 /	(-) 4 70	ト数式	データ 校開	憲	間範	PEAD	ĭ −/.) - 🗖	X
	🗎 🔏 ហែបផល)	MS D-	(in) Kalenda	× 11 × A*				则.乙令(休友	ホテオス	槽准						-	Σ オ・	- h SUM +	A	a			
BEN	🔜 🖬 38 - 1		more	1233			= = *		20C±1+2	\$01.90	178-1-		2 (4 (4 % -			17.1		71	JF ≁ 10	Zu				
869	* 🧳 書式の	コピー/貼り付け	H B I	<u>n</u> .	• 🗠 • 🔺 🖆			譚 藍セルを	結合して中	央揃え、	" % ,	00. 00. 0.€ 00.	第1115 15 書式 ▼ 書	- ブルとしし 式設定 -	スタイル・	博人	Hilbit Hil	<u>م</u> يەر	₽ -	迎へ省える フィルタ・	18 ※C 遥択 ▼			
	クリップボー	1	5	フォン	/ h	5		配置		Gi.	数值	G _i		スタイル			セル		編	集				
	AB69	-	(• 1	Se .																				×
4	E F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	
26	経過時間(単色光波長	単色光量(m)	ベース電流m	短絡電流Isc(mA)	開放電圧\	最大出力電2	,最大出力動作	最大出力動	曲線因子F	直列抵抗Rs(並列抵抗Rsh	受光部面积3	€換効率 ?	入射光Pir	t 電圧(V)	-0.05	-0.03226	-0.01452	0.00322	0.02096	0.0387	0.05644	
27	0	400	0.4094	-2.673E-07	0.00246093	0.53103	0.00024574	0.164654	0.001492	0.188041	1.2753E+05	3.5277E+05	0.1	0.60024	0.04094	IPCE(%)	19.27128	19.23032	18,94001	1856648	18.08557	17.62822	17.00065	
28	13.697	420	0.4888	30633E-07	0.00251972	0.53028	0.00002472	0.164654	0.001662	0.185011	1.2688E+05	3.1310E+05	0.1	0.50574	0.04888	IPCE(%)	15,95032	16.97065	16,40619	161906	14.75186	14:27354	13,90184	-
30	43.898	440	0.481	2.7333E-08	0.0032133	0.53744	0.00029642	0.157558	0.001881	0.171646	1.0433E+05	2.2267E+05	0.1	0.61626	0.04972	IPCE(%)	19.10975	18,73342	18.38579	17.92428	17,39893	1687381	16.12951	
31	58.017	480	0.4987	-9.077E-07	0.0033959	0.51911	0.00030767	0.157558	0.001953	0.174531	1.0048E+05	2.0102E+05	0.1	0.61695	0.04987	IPCE(%)	18.69486	18.37442	17.94084	17,51363	16,99298	16.36613	15.57621	
32	73.149	500	0.4692	-5E-09	0.0033698	0.54286	0.00030209	0.15401	0.001962	0.165141	1.0187E+05	2.0447E+05	0.1	0.64385	0.04692	PIPCE(%)	18,89158	18,53052	18/20038	17.725	17.16034	16.44409	15.87567	
33	87,688	520	0.455	-1.86E-07	0.0022161	0.53536	0.0002925	0.15401	0.001706	0.165554	9.7760E+04	2,0182E+05	0.1	0.64286	0.0455	DIPCE(%)	18:26 /01	18.02446	1603974	17.10311	16.57111	15,96332	15:25496	-
35	116 252	560	0.4356	-1.083E-07	0.0032436	0.53438	0.00028571	0.152236	0.001/30	0.164835	9 9057E+04	21449E+05	0.1	0.65589	0.04356	IPOE(%)	17.6354	17,25395	1682578	1641307	15,86474	15,30023	14,59559	-
36	130.448	580	0.3974	-9.8E-08	0.0033159	0.53537	0.00028908	0.155784	0.001856	0.16284	1.0622E+05	1.8124E+05	0.1	0.72743	0.03974	IPCE(%)	19.02362	18.71745	18:20761	17.75727	17.11228	16.41872	15.65952	
37	145.83	600	0.3852	-8.463E-07	0.0034253	0.5339	0.00029756	0.152236	0.001955	0.162713	9.4958E+04	1.7258E+05	0.1	0.77249	0.03852	PIPCE(%)	19,58914	19,363	18,90637	18.25997	17.62758	16.92657	16.0837	
38	160.478	620	0.3728	-1.35E-07	0.000655	0.53505	0.00030666	0.15401	0.001991	0.160302	1 JU39E+U5	1.6890E+05	0.1	0.82259	0.03728	IPCE(%)	20.62846	20.146	19.70298	19,0658	18,48007	17,65587	16.78372	-
40	189 276	660	0.3806	-1.147E-07	0.0036983	0.53442	0.00031066	0.150462	0.002017	0.15904	89205E+04	1.9440E+05	0.1	0.81168	0.03876	IPCE(%)	1933605	18,87406	1847053	17 80616	17,03970	164976	15.67372	
41	203.612	680	0.3698	7.7333E-08	0.0037649	0.54099	0.00031522	0.15401	0.002047	0.154766	8.8204E+04	1.6603E+05	25		0.00011			10.01100	10111000	11.00010		16,99308	16.2005	
42	D 219.197	700	0.38	-2.09E-07	0.0034515	0.5318	0.0002919	0.150462	0.00194	0.159029	9.5837E+04	1.7740E+05		·			Star E					14.74775	13.99695	
43	233.627	720	0.4017	-34E-08	0.00254582	0.51737	0.00022157	0.152236	0.001455	0.168223	1.2774E+05	2.5845E+05	_				波長	別IPCE	SIMU-1)		-0-440	10.09314	9,595938	
44	5 249.274	740	0.4003	-77E-08	0.00142147	0.49030	67172E-05	0.169332	0.000631	0.190027	4.6856E+05	1.2557E+06	20	Bp	+						-0-480	210608	2.009400	- =
46	280.88	780	0.4754	-1.62E-07	0.00033062	0.42131	3.4257E-05	0.17175	0.000199	0.245938	9.1018E+05	2.9626E+06			h.						-0-500	1.047489	1.017225	
47	296.698	800	0.4742	-1.22E-07	0.000173659	0.38212	1.8898E-05	0.175298	0.000108	0.284785	1.6734E+06	6.1142E+06		1 10	REA							0.540192	0.530282	
48	311.471	820	0.5379	-6.273E-07	0.000088399	0.37901	1.0332E-05	0.185941	5.56E-05	0.308373	2,5661 E+06	2.0440E+07	15			6			++		-0-560	0.248599	0.239027	-
49	328.522	940	0.6328	-1.007E-07	0.000040502	0.32499	7.0631E-06 4.6102E-06	0.109970	4.10E-00	0.34700	3,0000E+00 9,5490E+06	2.0115E+07 2.6607E+07	-		1 14	B .					-0-600	0.140985	0.138711	-
51	362.25	880	0.5005	-2.27E-07	2,47779E-05	0.280148	2.7693E-06	0.15933	1.74E-05	0.39895	3.6002E+06	5.2115E+07	8	00	Dan D						-0-620	0.067769	0.066499	
52	378,474	900	0.5288	-1.263E-07	1.56928E-05	0.263215	1.7419E-06	0.161105	1.08E-05	0.4217	3.4342E+06	6.3088E+07	- H ¹¹		1000			1	1		-0-660	0.03905	0.038245	
53	393.637	920	0.598	-5.133E-08	1.01048E-05	0.233797	9.6204E-07	0.173525	5.54E-06	0.40722	3.5581 E+06	9.9106E+08	L A			ч. Ч Б	A				-0-680	0.029834	-0.00138	
54	10.189	940	0.5083	-1313E-07	0.000005238	0.225397	4.9982E-07	0.002040	3.17E-00	0.42330	2 7075E+06	5 6215E+08	-			<u> </u>	<u> </u>		-		-0-720	0.005451	0.004977	
56	445,008	980	0,4436	-1.7E-07	1.78538E-06	0.167994	9.4242E-08	0.079501	1.19E-06	0.31421	3.7399E+06	1.8576E+08				Poor T					-0-740	0.004264	0.004045	
57	459.828	1000	0.5348	-1.133E-07	9.1429E-07	0.111306	2.7012E-08	0.045797	5.9E-07	0.265432	3.7524E+06	1.8673E+08			Poooc			-			-0-780	0.001555	0.001038	
58	476.099	1020	0.4526	-1.64E-07	6.4585E-07	0.087691	1.9084E-08	0.054665	3.49E-07	0.33696	3.7440E+06	1.4970E+08		-66	poooot	000000	000000000	0000000	000000			0.001007	0.000905	
59	492,011	1040	0.3352	-7.933E-08	9.6842E-07	0.000400	3.5927E-08 1.0965E-00	0.0067665	5.82E-07	0.33192	3./4/8E+06	2.729UE+08	_								-2-820	L0.00041	-0.00076	
61	523,836	1080	0.3362	-1.183E-07	3.2821 E-07	0.043086	65798E-09	0.0245072	2.68E-07	0.46529	3.5725E+06	5,9133E+09									<u>−</u> <u>∆</u> −860	0.000334	-0.00102	
62	539.607	1100	0.25285	-2.3E-08	3.07854E-07	0.044157	2.2976E-09	0.0227326	1.01E-07	0.169014	3.9776E+06	1.1987E+08	-8		0 0	1 0.3	0.3	0.4		0.7		0.00016	-0.00036	
63																	電圧のの	0.1		0.7				
65																-	电/工(V)				-1-340	_		
66																								-
14 4	→ N Sheet1	/Sheet2	/Sheet3 /	Sheet4 /SI	heet6 Sheet7	2							1										•	1
37)	ンド 🎦																				80% 🕞) .:
						_										-								

シ波長別I-V測定の作図を等高線作図に変更します。

波長別分光感度の作図を

等高線作図へ変更します。

227 0671 7014 N O 0.001 39 37 1 9454 0.001 384 37 02704 0.001 38 36 93553 P 207.706 259.55 311.402 Q R S 01499999 0.001561 41.80497 01999999 0.001552 41.5618 0.25 0.001546 41.39013 ⇒ 9ングレ
 証券
 近 折れ線
 ● 円
 ● 円
 ● 株林
 ● 面
 ● 数布回
 ● 数布回
 015 000 025 000 025 000 035 000 045 000 045 000 045 000 045 000 045 000 045 000 045 000 045 000 045 000 045 000 045 000 045 000 100 00 111 000 115 000 115 000 145 207 646 259 481 311 345 ー旦、コピーした後、 グラフ挿入ダイアログを開き、 22 23 24 25 26 790 810 830 850 850 850 890 910 80 波長別分光感度 iii ka ka ka ka -0-410 -0-430 -0-450 -0-470 30 31 32 33 34 35 36 37 39 40 41 42 34 45 50 51 52 54 55 56 57 59 60 61 62 66 66 67 69 970 121 RF18 林価 (M/WW) 低酸光白 0 20 40 40 40 anti dall internet 990 1010 1030 1050 1070 1090 -0-490 -0-510 6 P -100 -120 -140 -570 (本本のうつに)(定(3)) ----電圧(V) テンプレートの管理(10)。 -OK 1411.109 1.29 1454 563 1506 396 1558 24 1620187 1672041 1723 887 1775 827 1875 827 1875 827 1875 827 1875 827 1875 827 1875 827 1875 827 1875 827 1875 827 1875 827 2065 917 2139 708 2281 897 2394 2593 2394 259 2394 259 2394 255 3910708 波長別分光感度 60-8 40-6 20-4 I-V作図をコピーした後 等高線作図に変更します 5)光感费(mA/W) 215 000 22 000 225 000 235 712 24 -00 245 -00 255 -00 255 -00 255 -00 2295.674 2348.373 2346,573 2399,076 2449,792 2500,489 2551,179 2608,024 2659,879 2711,708 2763,566 -2.62532 -13.5397 -26.8355 -42.8632 -62.376 -85.3021 -0.000 -0.001 -0.0016 -0.00233 **電圧M** eet1 Sheet2 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 S 14

本ソフトは、測定対象となるセルの光応答性や電気的応答性に適切に対応し、正確な測定ができるように、 様々な部分にWAIT時間の設定ができます。また分光光源の物理的動作の遅れにも対応できます。 ここでは、測定上のWAIT位置とその入力方法を示します。

注)

ここでの測定で、分光光源のシャッター開閉制御ができないシステムでは、下記の「暗電流測定」部分は省略されます。

ソーラーシミュレータの光量可変I-V測定の測定手順

注)

この項目の測定は、下記の条件が満たされている場合に可能です。 <u>1.ソーラーシミュレータの光量連続可変が可能な光源(朝日分光製HAL-C100)が接続されている。</u> <u>2.ソフト型番「W32-B2900SOLBMS2」である。</u>

分光光源の選択を行います。

分光光源の選択を行っていないと、バイアス光量の制御モードが設定できません。

		n	(C)20122014 SYSTEMHOUSE SUNRISE Inc.
DEVICE INFOMATION			分光器 BMS-25C 峰小
SMU1	ОК		QE.START PAUSE STOP
B2902 *			SPECTRUM I-V Sweep
GP-IBアドレス Qaw Zillett Qaw Zillett	高用图波数 ○ 50Hz ○ 60Hz		Excel Sween List
	一外部測定開始信号		Provident
	□ 外部トリガ測定(82900 DIO)		-74-78.7
□ Hi-Capa □Beep □Out Auto ON □Out Auto OFF □Out Filter 他の設定			出力単位 スイーブモード
マトリガード出力/Excel			
Use SMU2	1 9180A1970A1-2	ハッッ海ナ源中にナナ	STOP 0.8 V
		万元元源を迭択します。	STEP 0.02 V 図終7時代力のFF
			#課電流 5.68 mA □ 注意测定
	一分光光源		保持時間 ms □パルス出力
	MLS-1510		测定方法
	e6 波長位置		10 日本 10 日本
	Book2 Sheet1 IT細胞定		■ 測定レン2 ■抵抗
			2 グランドと 2 時間
		-	マナ間の法御中 ***
			Rivert-still (11) - School
			- 機器の設定 📽 🖬 MESET SEQ

シャッター制御にチェックを付けて、バイアス光量の制御条件を入力します。 ソーラーシミュレータの種類を「Asahi Spectra」を選択しないと、「光量制御ON」が表示されません。

3

「BS.START」ボタンをクリックすると測定を開始します。

ソーラーシミュレータ光量可変によるI-V測定のタイミングチャート

手動でのバイアス光印加の測定

注)

この項目の測定は、下記の条件が満たされている場合に可能です。 <u>1.PCからの分光光源のシャッター開閉制御が可能なシステム構成である。</u>

1.バイアス光測定の条件設定

バイアス光を印加しない測定と、印加する測定とで本アドインの操作方法 に違いは有りません。必要なことは、必ず「ベース電流を測定する(毎回」 を選択することです。(右図)

2.バイアス光用光源の選択について

バイアス光の光源を選択する場合、ハロゲン光源やLED光源を推奨 します。

ー般的にソーラーシミュレータで使用される大パワーのキセノン光源 はお勧めできません。キセノン管は、放電管であるため光のチラつき が大きく、Isc/Jsc値の測定にバラツキを生じる原因になります。 もし、キセノン光源を使用する場合は、単色光の100倍程度の光量 以下に光量を落としてご使用ください。

例えば、単色光のMaxが、1mW/cm2であれば、バイアス光の光量を 100mW/cm2以下にすることをお勧めします。

太陽電池セルの分光感度特性が極端に小さい場合、または、単色光の光量に対し、バイアス光の光量を大きくしすぎると、右図のように 測定結果が不安定になります。

バイアス光無しでの測定例

バイアス光の光量が大きい場合

バイアス光を印加して、DC法で分光感度を測定する方法は下記の図のように行われます。 バイアス光は常時印加した状態で、単色光の波長を変更しながら、Iscの測定を行います。 各波長ごとに、単色光OFFでのIscを測定し、次に、単色光ONのIscを測定し、その電流差を取り出します。 その電流差を使用して分光感度/IPCEを計算します。

使用する測定器B2900Aシリーズは、電流測定を6桁半の有効桁数で測定を行うため、バイアス光による電流 オフセットを伴う単色光のIsc電流増分も、ある程度までの測定は可能になります。

単色光の光量に対し、バイアス光の光量をあまり大きくすると分光感度の測定値がばらついたり、 確度の悪化をもたらします。

バイアス光の光量は、単色光の最大光量の100倍以下で測定されることをお勧めします。

4.バイアス光印加の波長別I-V測定の原理

I-V測定データに対しベース電流(暗電流)の補正を行う場合、「ISC値」補正と、「スイープ値」補正の選択ができます。(15ページ参照)

「ISC値」補正を選択した場合は、各波長ごとに、I-V測定直前のバイアス光だけのIscを測定し、その後、 単色光をONにしてI-V測定を行います。バイアス光だけのIsc値をゼロとしてI-Vデータを作図します。 (下図参照)

「スイープ値」を選択した場合は、単色光OFFのIVデータと、単色光ONでのIVデータの差を算出し、IVデータとします。

バイアス光用光源の光量校正方法

注)

この項目の測定は、下記の条件が満たされている場合に可能です。 <u>1.バイアス光源として、光量連続可変が可能な白色光源(朝日分光製HAL-C100)が</u> <u>接続されている場合。(バイアス光源の直線性を補正する機能です。)</u> <u>2.ソフト品番が「W32-B2900SOLBMS2」である。</u>

1. 光量校正リストを作成します。

ソーラーシミュレータの光出力設定値(%)に対する実際の光出力値を測定します。 光出力を測定するためのセンサーが必要になりますが、ここでは単結晶Siセルを使用します。 フォトダイオードの出力をマルチメータで測定することでもよいと思います。 光量に正比例する受光素 であれば 題ありません。

・Excelシートに、ソーラーシミュレータの校正する出力リスト(%値)を縦方向に手入力します。

- ・ソーラーシミュレータでセル(受光素)に照射します。
- ・IV測定ソフトのISCモニター機能を起動して、セルのISC値を観察します。

・出力リスト(%)に従って、手動でソーラーシミュレータの出力(%)を変えながら、それぞれのISC値を
 読み取り、Excelシートにキー入力します。この時、マイナスの読み値をプラスに変更して、Excel
 へ入力します。

読み値の単位は、何でも 題ありません。(A,V,mW/cm2,等々)

・光量校正リストの作成は、全て手動測定で行ってもかまいませんが、
 下記のように、IV測定ソフトのISC連続測定機能を利用すると、容易に行うことができます。

2. 光量校正リストを読み込みます。

3. 光量校正リストの測定への適応、校正リストの確認/削除。

4. 光量校正が行われていない時と、行われている時の光量算出方法の違い。

例として、ソーラーシミュレータの光出力が80%で、1-SUN(100mW/cm2)に設定されていて、 光量制御リストが、「0,0.4,0.8,1.0,1.1」と入力された場合。

光量制御リスト	光出力	光量計算式	算出された 光量値(mW/cm2)
0	シャッター 閉じる		0
0.4	32%	100* 0.4	40
0.8	64%	100* 0.8	80
1.0	80%	初期値	100
1.1	88%	100* 1.1	110

光量校正が無い場合の光量算出方法

光量校正が有る場	合の光量算出方法
----------	----------

光量制御リスト	光出力	ISC測定値 (mA)	光量計算式	算出された 光量値(mW/cm2)
0	シャッター 閉じる			0
0.4	32%	4.2	100* 4.2	35
0.8	64%	9.1	100* <u>9.1</u> 12.0	75.8
1.0	80%	12.0	初期値	100
1.1	88%	13.44	100* <u>13.44</u> 12.0	112

光量校正リスト

注)該当する数値(%)が無い場合は、比例配分によりISC値を 算出して、補正を行います。

Appendix-1 バイアス光照射による分光感度測定の注意点

<u>1.バイアス光源の選択</u>

バイアス光源は、極力、光量が安定しているものを使用してください。 ただ、数秒以上でゆっくりと光量が変動するものは 題ありません。 チラつきの無いハロゲン光源やLED等が理想的です。

モノクロ光源の光量が1mW/cm2以上確保できるのであれば、キセノンを使用したソーラーシ ミュレータの使用が可能ですが、100W程度のキセノン管タイプで、チラつきの少ないものを 使用してください。朝日分光製HAL-C100をお勧めします。

<u>2.分光感度測定用モノクロ光源の光量について</u>

モノクロ光源は、極力、光量のパワーを大きくして測定することが大切です。 しかし、チラつきの無いハロゲン光源やLEDを使用する場合は、モノクロ光源の光量は、それ ほど 題ではありません。

朝日分光製HAL-C100のソーラーシミュレータ(キセノン管)をバイアス光源に使用し、モノクロ光源にMLS-1510を使用する場合、照射領域を10mm*10mm程度まで絞り、500nm域の光量を1mW/cm2以上に光量をアップして測定してください。

3.有機系太陽電池の分光感度測定の注意事項

バイアス光を照射して分光感度測定を行った時、測定開始の波長部分で下図 の丸印の様に、分光感度がマイナスになる、または、小さめの値を示す場合が 有ります。または、その逆の場合も有ります。 この原因は、バイアス光による電流(ISC)が安定状態になる前に測定を開始 したためです。しかし、ペロブスカイト太陽電池を含め、有機系太陽電池では、 電流(ISC)が完全に安定するためには多くの時間を必要とします。 この測定誤差を回避するために、有機系太陽電池測定では、右図の「ORGANIC」 にチェックを付けます。(無機系の測定を行っても 題はありません。) しかし、急激な電流変化のある先頭の時間帯だけは避けてください。 次ページ以降に、その詳細を記載します。

<u> 無機系太陽電池の場合</u>

「ORGANIC」にチェックを付けない。 Si系や化合物系などのセルの場合は、電流の応答性も速く、電流値 (ISC)も安定しているため、「ORGANIC」にチェックを付けないで測定 します。ただし、チェックを付けて測定しても 題は有りませんが、 若干、測定時間が増えます。

有機系太陽電池の場合

「ORGANIC」にチェックを付ける。

ペロブスカイト型太陽電池を含む有機系太陽電池は、バイアス光を照射後の電流(ISC)の変化が大きく、 電流(ISC)が安定するのに長い時間が掛かります。

また、単色光照射ON/OFFの両方に対する電流応答も緩慢です。

有機系太陽電池では、これらの特徴を考慮した測定条件を設定して分光感度測定を行わないと、正しい 測定ができません。

●分光感度測定時の電流波形

「ORGANIC」にチェックを付ける

分光感度測定のタイムチャート

「ORGANIC」にチェックを付ける。

26/26